Time schedule – changed version

Practice 8 (2013. Apr. 3.). The chemistry will be discussed on the 8th seminar (2013. March. 27.)

1. The reactions of cations

2. The analysis of cation group I and group IIA (Copper(II), silver(I), cadmium(II), mercury(I), mercury(II), lead(II) and bismuth(III) ions).

Purity test

3. Investigation of lead impurity in boric acid.

Practice 9 (2013. Apr. 10.). The chemistry will be discussed on the 9th seminar (2013. Apr. 8.)

Sanger – Black's test for trace analysis of arsenic impurity in solution (*demonstration*).
The reactions of cations of cation group I and group IIA (Copper(II), silver(I), cadmium(II), mercury(I), mercury(I), lead(II) and bismuth(III) ions) with KI and K₂Cr₂O₇ (*demonstration*).

Purity test

3. Investigation of silver impurity in "bismuth subnitrate, heavy".

Unknown sample

4. Detection of two cations of group I or IIA in a solution $(Ag^+, Cd^{2+}, Cu^{2+}, Hg_2^{2+}, Hg^{2+}, Pb^{2+}, Bi(III) (Hg_2^{2+} - Hg^{2+} and Cu^{2+} - Hg_2^{2+} ions are not given together).$

Voluntary test

– Detection of one or two cations of group I and IIA in solution $(Hg_2^{2+} - Hg^{2+} \text{ and } Cu^{2+} - Hg_2^{2+} \text{ ions are not given together}).$

Practice 10 (2013. Apr. 17.). The chemistry will be discussed on the 10th seminar (2013. Apr. 15.)

- 1. The analysis of cation group IIB (arsenic(III), arsenic(V), antimony(III), antimony(V), tin(II) and tin(IV)).
- 2. Reactions of permanganate, chromate and dichromate ions (S.I. Practice 11).
- 3. Preparation and properties cyanide complexes of some transition metal ions (S.I. Practice 11).
- 4. Oxydation states of transition metals belonging to 3d row in aqueous solutions (S.I. Practice 11).
- 5. Use of organic reactions in analysis (S.I. Practice 11).

Purity test

6. Investigation of iron impurity in citric acid.

Practice 11 (2013. April 24.). The chemistry will be discussed on the 11th seminar (2013. April 22.).

1. The analysis of cation group III (nickel(II), cobalt(II), iron(II), iron(III), manganese(II), chromium(III), zinc(II) and aluminium(III) ions).

- 2. "Fluoride test" for aluminium (*demonstration*).
- 3. Detection of traces of nickel in cobalt salts.

Unknown sample

4. Detection of two cations of group III in solution (the oxidation state of Fe and Cr can be +3, and the oxidation state of Mn can be +2 only).

Voluntary test

- Detection of one or two cations of group III in solution (the oxidation state of Fe and Cr can be +3, and the oxidation state of Mn can be +2 only).

No practice will be held on the 1st May.

Practice 12 (2013. May 8.). The chemistry will be

discussed on the 12th seminar (2013. May 6.) 1. The analysis of cation group IV (calcium(II), strontium(II) and barium(II) ions).

2. The analysis of cation group V (magnesium(II), lithium(I), sodium(I), potassium(I) and ammonium ions).

3. Reaction of Sr^{2+} and Ba^{2+} ions with sodium rhodizonate (S.I. Practice 13).

4. Salts of alkali metal ions with poor solubility in water (S.I. Practice 13).

5. Detection of traces of ammonia (demonstration).

Unknown sample

6. Detection of two cations of group I, IIA, III, IV or V in solution (One component is a cation of group I, IIA or III $(Cu^{2+}; Ag^+; Cd^{2+}; Hg^{2+}; Hg^{2+}; Pb^{2+}; Bi(III); Ni^{2+}; Co^{2+}; Fe^{2+}; Fe^{3+}; Mn^{2+}; Cr^{3+}; Zn^{2+}; Al^{3+})$ and the **other one** is a cation of group IV or V $(Ca^{2+}; Sr^{2+}; Ba^{2+}; Li^+; Na^+; K^+; NH_4^+)$. The oxidation state of Cr is +3, and the oxidation state of Mn is +2. Fe can be in oxidation state +2 or +3).

Voluntary test

- The same as the unknown sample (solution is given).

Demonstrations taken from the lectures

7. Preparation and colour of chromium(VI) peroxide $(CrO(O_2)_2)$ (V.III.24.8.b.).

Practice 13 (2013. May 15.). The chemistry will be discussed on the 13th seminar (2013. May 13.)

1. The analysis of anion group IV (nitrite, nitrate and chlorate ions).

2. Detection of nitrite and nitrate ions with Griess-Ilosvay reagent.

Unknown sample

3. Detection of two anions of group I–IV in a mixture of two alkali metal salts ($CO_3^{2-}S^{2-}$; SO_4^{2-} ; SO_4^{2-} ; PO_4^{3-} (HPO₄²⁻; H₂PO₄⁻); F⁻; BrO₃⁻; IO₃⁻; Cl⁻; Br⁻; I⁻; NO₂⁻ and NO₃⁻). The pairs of : SO₃²⁻ - SO₄²⁻; Br⁻ $-NO_3^-$ and $I^- - NO_3^-$ are not given).

Voluntary test

4. The same as unknown sample, but solution is given.

Demonstrations taken from the lectures

5. Preparation of nitrous acid (cc. NO_2^- solution + ice + HCl) (GEL 4.26).

6. The brown ring test for nitrit ions (GEL 4.29c).

7. The Gries-Ilosvay reaction for the nitrite ions (GEL 4.31).

8. Reaction of chlorate ions with cc. H_2SO_4 (GEL 4.31).

Practice 14 (2013. May 22.). The chemistry will be discussed on the 14th seminar (the date to be discussed later)

- 1. Summary on group reactions.
- 2. Complete qualitative analysis of a solid sample.

Unknown sample

3. Complete qualitative analysis (cations, anions) of a solid mixture of two components. The cations or the anions in the two components are the same. This way the number of the detectable ions is 3.

The same **cations** can be in the sample which were investigated formerly (Cu^{2+} ; Ag^+ ; Cd^{2+} ; Hg^{2+} ; Pb^{2+} ; Bi(III); Ni^{2+} ; Co^{2+} ; Fe^{3+} ; Mn^{2+} ; Cr^{3+} ; Zn^{2+} ; Al^{3+} ; Ca^{2+} ; Sr^{2+} ; Ba^{2+} ; Li^{+} ; Na^{+} ; K^{+} ; NH_{4}^{+}), but Mg^{2+} is not given, and also two cations of group IV and of group V can not be together. The oxidation state of Hg, and Mn can be +2 only, oxidation state of Fe and Cr can be +3.

The possible **anions** are as follows : CO_3^{2-} (HCO₃⁻); SO_4^{2-} ; PO_4^{3-} (HPO₄²⁻, H₂PO₄⁻); F⁻; Cl⁻; Br⁻; I⁻; NO_3^{-} The various protonated forms of the anions cannot be identified.

4. Inventory and return of laboratory equipments.