Semainar 1: Simple pH calculations

1. Calculate the pH of the solution:
a) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.01 \mathrm{~mol} / \mathrm{dm}^{3}$
b) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.1 \times 10^{-3} \mathrm{~mol} / \mathrm{dm}^{3}$
c) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.65 \times 10^{-5} \mathrm{~mol} / \mathrm{dm}^{3}$
2. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and the $\left[\mathrm{OH}^{-}\right]$concentrations in the following solutions:
a) $\mathrm{pH}=2.32$
b) $\mathrm{pH}=6.45$
c) $\mathrm{pH}=11.32$
3. A sample of orange juice has an equilibrium hydrogen ion concentration of $2.9 \times 10^{-4} \mathrm{M}$. What is the pH ? Is the solution acidic, basic or neutral?
4. A saturated solution of potassium hydroxide has an equilibrium hydroxide ion concentration of 0.05 M . What is the pH ? Is the solution acidic, basic or neutral?
5. $\mathrm{A} \mathrm{HClO}_{4}$ solution has an analytical concentration of 0.012 M . What is the equilibrium hydrogen ion concentration and the pH ?
6. A NaOH solution has an analytical concentration of $10^{-7} \mathrm{M}$. What is the equilibrium hydroxide ion concentration, the pOH and the pH ?
7. Calculate the pH of pure water at 25.0 and $50.0^{\circ} \mathrm{C}\left(\mathrm{K}_{\mathrm{W}}=1.0 \times 10^{-14}\right.$ and 5.0×10^{-14}, respectively)
8.10 .00 ml of HCl of unknown concentration is titrated with potassium hydroxide whose concentration is 0.085 M . Calculate the pH at: a) $\mathbf{0} \%$; b) $\mathbf{4 0} \%$; c) $\mathbf{1 0 0} \%$; d) $\mathbf{1 6 0} \%$ degree of titration. Up to the equivalence point 12.55 mL of KOH solution is consumed.
8. 20.00 ml of HCl of $0.100 \mathrm{~mol} / \mathrm{dm}^{3}$ concentration is titrated with sodium hydroxide whose concentration is $0.200 \mathrm{~mol} / \mathrm{dm}^{3}$. Calculate the pH at: a) $\mathbf{0} \%$; b) $\mathbf{2 0} \%$; c) $\mathbf{5 0} \%$; d) $\mathbf{1 2 0}$ \% degree of titration.
