Calculation of pH in the case of monoprotic acids and bases

1. What is the pH of a 0.1 M acetic acid solution?
2. What is the pH of a 0.1 M ammonia solution?
3. What is the pH of a 0.1 M sodium acetate solution?
4. What is the concentration (in $\mathrm{g} / \mathrm{dm}^{3}$ units) of an ammonia solution which has a pH of 11.100 ?
5. A monobasic organic acid has a $\mathrm{p} K$ of 4.875 . The pH of a saturated solution of this acid is 3.700 . Calculate the solubility of this organic acid in $\mathrm{mol} / \mathrm{dm}^{3}$ units.
6. What are the pH and the degree of dissociation in a a) 0.1 M ; in a b) 0.01 M and in a c) 0.001 M acetic acid solution, respectively?
7. What is the pH in a 0.010 M solution of a moderately weak acid if the $\mathrm{K}_{\mathrm{a}}=1.5 \times 10^{-5}$?
8. A windscreen washing liquid contains ammonia in $2.00 \mathrm{~g} / \mathrm{dm}^{3}$ concentration. What is the pH of this liquid?
9. $20.00 \mathrm{~cm}^{3}$ of 0.1 M ammonia solution is titrated with $0.25 \mathrm{M} \mathrm{HClO}_{4}$. What is the added volume of titrant and the pH at 75% degree of titration?
10. The concentration of a monochloro acetic acid solution is 0.001 M . What are the pH and the degree of dissociation in this solution?
$K_{\mathrm{a}}=1.86 \times 10^{-5}$ for acetic acid
$K_{\mathrm{a}}=1.20 \times 10^{-3}$ for monochloro acetic acid
$K_{\mathrm{b}}=1.75 \times 10^{-5}$ for ammonia
