Titration of strong acid with strong base

degree of titration (\%)	What species are present	calculation of $\mathbf{p H} / \mathbf{p O H}$	conditions
0	strong acid	$\left[\mathrm{H}^{+}\right]=\mathrm{c}_{\text {strong acid }}$	$\mathrm{c}_{\text {strong acid }}>10^{-6} \mathrm{M}$
		$\left[\mathrm{H}^{+}\right]=\mathrm{c}_{\text {strong acid }}+\frac{K_{\mathrm{W}}}{\left[\mathrm{H}^{+}\right]}$	under any conditions
0-100	neutral salt + strong acid	$\left[\mathrm{H}^{+}\right]=\mathrm{c}_{\text {strong acid }}$	$\mathrm{c}_{\text {strong acid }}>10^{-6} \mathrm{M}$
		$\left[\mathrm{H}^{+}\right]=\mathrm{c}_{\text {strong acid }}+\frac{K_{\mathrm{W}}}{\left[\mathrm{H}^{+}\right]}$	under any conditions
100	neutral salt	$\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=\sqrt{K_{\mathrm{W}}}$	under any conditions
>100	neutral salt + strong base	$\left[\mathrm{OH}^{-}\right]=\mathrm{c}_{\text {strong base }}$	$\mathrm{c}_{\text {strong base }}>10^{-6} \mathrm{M}$
		$\left[\mathrm{OH}^{-}\right]=\mathrm{c}_{\text {strong base }}+\frac{K_{\mathrm{W}}}{\left[\mathrm{OH}^{-}\right]}$	under any conditions

Titration of monoprotic weak acid with srtong base

degree of titration (\%)	What species are present	calculation of $\mathbf{p H} / \mathbf{p O H}$	conditions
0	weak acid	$\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \cdot \frac{\mathrm{c}_{\text {weak acid }}-\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]}$	under any conditions
		$\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a}} \cdot \mathrm{c}_{\text {weak acid }}}$	$\mathrm{c}_{\text {weak acid }} \ggg K_{\text {a }}$
0-100	weak acid + conjugate base= acidic BUFFER	$\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \cdot \frac{\mathrm{c}_{\text {weak acid }}}{\mathrm{c}_{\text {conj. base }}}=K_{\mathrm{a}} \cdot \frac{\mathrm{n}_{\text {weak acid }}}{\mathrm{n}_{\text {conj. base }}}$	under any conditions
100	conjugate base (basic salt)	$\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{b}} \cdot \frac{\mathrm{c}_{\text {conj. base }}-\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{OH}^{-}\right]}$	under any conditions
		$\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{b}} \cdot \mathrm{c}_{\text {conj. base }}}$	$\mathrm{c}_{\text {conj. } \text { base }} \ggg K_{\mathrm{b}}$
>100	basic salt + strong base	$\left[\mathrm{OH}^{-}\right]=\mathrm{c}_{\text {strong base }}$	$\mathrm{c}_{\text {strong base }} \ggg \mathrm{c}_{\text {conj. }} \mathrm{b}$.
		$\left[\mathrm{OH}^{-}\right]=\mathrm{c}_{\text {strong base }}+\mathrm{K}_{\mathrm{b}} \cdot \frac{\mathrm{c}_{\text {conj. base }}-\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{OH}^{-}\right]}$	under any conditions

Titration of triprotic acid with strong base, where $K_{a 1} \ggg>K_{a 2} \ggg>K_{a 3}$

degree of titration (\%)	What species are present	calculation of $\mathbf{p H} / \mathbf{p O H}$	conditions
0	weak acid	$\left[\mathrm{H}^{+}\right]=K_{\mathrm{a} 1} \cdot \frac{\mathrm{c}_{\text {weak acid }}-\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]}$	under any conditions
		$\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a} 1} \cdot \mathrm{c}_{\text {weak acid }}}$	$\mathrm{c}_{\text {weak acid }} \ggg K_{\text {a } 1}$
0-100	weak acid + conjugate base $=$ acidic BUFFER	$\left[\mathrm{H}^{+}\right]=K_{\mathrm{a} 1} \cdot \frac{\mathrm{c}_{\text {weak acid }}}{\mathrm{c}_{\text {conj. base }}}=K_{\mathrm{a} 1} \cdot \frac{\mathrm{n}_{\text {weak acid }}}{\mathrm{n}_{\text {conj. base }}}$	under any conditions
100	acid salt (ampholyte)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a} 1} \cdot \mathrm{~K}_{\mathrm{a} 2}}, \mathrm{pH}=-\mathrm{lg}\left[\mathrm{H}^{+}\right], \text {or }} \\ & \mathrm{pH}=\frac{p K_{a 1}+p K_{a 2}}{2} \end{aligned}$	under any conditions
100-200	weak acid + conjugate base= acidic BUFFER	$\left[\mathrm{H}^{+}\right]=K_{\mathrm{a} 2} \cdot \frac{\mathrm{c}_{\text {weak acid }}}{\mathrm{c}_{\text {conj. base }}}=K_{\mathrm{a} 2} \cdot \frac{\mathrm{n}_{\text {weak acid }}}{\mathrm{n}_{\text {conj. base }}}$	under any conditions
200	acid salt (ampholyte)	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{K_{\mathrm{a} 2} \cdot \mathrm{~K}_{\mathrm{a} 3}}, \mathrm{pH}=-\mathrm{lg}\left[\mathrm{H}^{+}\right], \text {or }} \\ & \mathrm{pH}=\frac{p K_{a 2}+p K_{a 3}}{2} \end{aligned}$	under any conditions
200-300	weak acid + conjugate base= acidic BUFFER	$\left[\mathrm{H}^{+}\right]=K_{\mathrm{a} 3} \cdot \frac{\mathrm{c}_{\text {weak acid }}}{\mathrm{c}_{\text {conj. base }}}=K_{\mathrm{a} 3} \cdot \frac{\mathrm{n}_{\text {weak acid }}}{\mathrm{n}_{\text {conj. base }}}$	under any conditions
300	conjugate base (basic salt)	$\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{bl}} \cdot \frac{\mathrm{c}_{\text {conj. base }}-\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{OH}^{-}\right]}$	under any conditions $\mathrm{K}_{\mathrm{b} 1}=\cdot \frac{\mathrm{K}_{\mathrm{W}}}{\mathrm{~K}_{\mathrm{a} 3}}$
		$\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{b} 1} \cdot \mathrm{c}_{\text {conj. base }}}$	$\mathrm{c}_{\text {weak base }} \ggg K_{\text {b1 }}$
>300	basic salt + strong base	$\left[\mathrm{OH}^{-}\right]=\mathrm{c}_{\text {strong base }}$	$\mathrm{c}_{\text {ctrong base }} \ggg \mathrm{c}_{\text {conj. }}$ b.
		$\left[\mathrm{OH}^{-}\right]=\mathrm{c}_{\text {strong base }}+\mathrm{K}_{\mathrm{b} 1} \cdot \frac{\mathrm{c}_{\text {conj. base }}-\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{OH}^{-}\right]}$	under any conditions

